N87-28431 D1-76 PN 93201

THE HALL EFFECT ANNUAL REPORT

During the year the Hall effect research program moved through several milestones. The equipment was acquired which will allow conventional Hall effect measurement to be made at State University. The program involved undergraduates and one graduate students in the system development. A working relationship was developed with the Naval Research Laboratory was also commenced. This contact will allow the performance of Quantum Hall effect.

We also consulted Dr. Robert Coleman at the University of Virginia. He is during Hall Effect experiments. The principal investigator also attended a short course in Radiation Damage through the auspices of the IEEE a Monterey, California.

The measurement system at Virginia State University consists of a Walker Scientific Power supply (from 0 to 50 amp) an alpha Magnet, a digital Gaussmeter, a HP 9816 computer with peripherals, a 3497A data acquisition will be used to acquire and analyze the data. A cryostat has also been acquired.

Roscoe Ledbetter. an undergraduate student has developed a computer program for data acquisition. A program to process and analyze the data is nearing completion. The decision has been made to operate two systems of sample geometries. One

THE HALL EFFECT ANNUAL REPORT

employs the standard Hall sample configuration. The other will utilize the Van der Pauw technique.

The experimental procedure as we have perceived it consists of the measurement of the Hall coefficient, resistivity, and Hall mobility as a function of temperature of a sample of Gallium Arsenide before and after irradiation with low and high energy protons. In order to compare the results with the known damages that are produced by proto irradiation, one need to know the relationship among the quantities that radiation damage and the Hall effect measurements have in common.

It is known that the effect of radiation damage is associated with the carrier concentration and the Hall mobilities. The manifestation of the radiation defects are "intrinsic defects". In order to establish and test the theory, a theoretical model is being developed using Lindhard's theory of atomic collisions.

The second most important step is to link the quantum Hall effect and the changes produced by proton collisions. Work has begun on the the development of a theory and subsequently experiments will be designed and performed.

APPENDIX I RESISTIVITY AND HALL COEFFICENT MEASUREMENTS VAN DER PAUW METHOD

The measurement theory developed by Van der Pauw involves the use of arbitrary geometric configurations. Incumbent adjustments are made for the chosen geometry. For our system consider a lamella

In order to make resistivity measurements a current I is passed through two adjacent contacts e.g. (2 and 3), the voltage V is then measured across the other contacts. The equation R = V/I is used. Next a current I' is passed through the next pair of contacts (3,4) and the voltage V' is measured across the other contacts. The equation R' = V'/I' is used. The resistivity '' of sample of thickness 't' is related to R and R' through the relation R' = V'/I'. The resistivity can thus be obtained.

In order to determine the value of the Hall coefficient, a current I is passed through two non adjacent contacts and the voltage V is measured across the other two. The relation R = R/I is used. The magnetic field is now energized and the measurements of V' and I' are then made on the same contacts. The Hall coefficient $R_{\rm H}$ can now be determined from $u=R_{\rm H}/$.

The measurement process consists passing a current through both directions and averaging the results. The magnetic field is reversed and measurements taking in both direction and averaged.

The following relations are typical for the experimental determination of the resistivity and Hall mobility. All measurement are made as a function of temperature.

=
$$t/\ln 2(V_{23}/2I_{14} + V_{24}/2I_{31})$$
 f

$$u_{H} = (V_{32}^{H})21n2/B(V_{21}/I_{34}+V_{13}/I_{42})f$$

```
! CURVE FITTING PROGRAM FOR HALL EFFECT DATA HENDERSON JORDAN FEB 7,1986
10
11
        IDENTIFIERS
13
             CI
                    COEF
                                   SOLUTION VECTOR
             03
                                   CORRELATION COEFFICIENTS
14
                    CORREL
15
             E2
                    SIGMA
                                   VECTOR OF ERRORS
16
             £5
                    SEE
                                   STD ERROR OF ESTIMATE
17
            L3
                    NLIN
                                   NUMBER OF PLOT LINES
18
            MI
                    MAX
                                   MAXIMUM LENGTH
19
             NI
                    NROW
                                   NUMBER OF ROWS
20
            N2
                    NCOL
                                   NUMBER OF COLUMNS
21
             R3
                    RESID
                                   VECTOR OF RESIDUALS
22
             57
                    SUMY
                                   SUM OF Y
23
             58
                    SUMY2
                                   SUM OF Y SQUARED
24
                                   SUM OF RESIDUALS SQUARED
             TE
                    SRS
25
             Y3
                    YCAL
                                   CALCULATED Y
26
      ! END OF IDENTIFIERS
40
      A$="DDO
               00.0
50
      C%="DDD
                 DD.d"
60
      M1 = 35
                                                           ORIGINAL PAGE IS
70
      DIM Z(4),A(4,4),C1(14),Y(35),U(35,4)
                                                           OF POOR QUALITY
      BIM W(4,1),B(4,4),I2(24,23),X(35),Y1(35)
90
      DIM Y2(35),R3(35),E2(4)
100
      GRAPHICS OFF
110
      PRINT
120
      PRINT " UP TO THIRD DEGREE POLYNOMIAL LEAST SQUARES FIT BY GAUSS JORDAN E
LIMINATION"
130
      PRINT
140
      605UB 500
                      ! GET THE DATA
150
      ! SORT THE DATA
      G0SUB 800
160
                       ļ
                          SQUARE UP THE MATRIX
170
      60SUB 4000
                          SET UP THE MATRIX
180
      G05UB 5000
                          GAUSS-JORDAN SOLUTION
                          PRINT THE RESULTS
190
      60SUB 1000
                       ļ
200
      G0SUB 7000
                          PLOT DATA
210
      GOTO 100
500
         GET THE DATA
510
      INPUT "NUMBER OF DATA POINTS", NI
520
      INPUT "POLYNOMIAL ORDER", N2
530
      IF N2>3 THEN 520
      IF N2<1 THEN 9999
540
550
      N2=N2+1
560 L3=(N1-1)*2+1
570
      IF N4=1 THEN 620
580
      FOR I=1 TO NI
600
      READ X(I),YI(I)
610
      NEXT I
620
      RETURN
630
      ! Y DATA
640
      DATA 1,2.07,2,8.6,3,14.42,4,15.8,5,18.92,6,17.96
      DATA 7,12.98,8,6.45,9,.27
650
660
      RETURN
              ! FROM INPUT ROUTINE
800
      ! SET UP THE MATRIX DATA
810
      FOR I=1 TO N1
      U(I,1)=1
820
830
      FOR J=2 TO N2
840
      U(I,J)=U(I,J-1)*X(I)
850
      NEXT J
860
      Y(I)=YI(I)
```

870

NEXT I

```
HE ELLON DETLING OF MIND BOILTY
000
       METAUM
.1000! CALCULATE RESIDUALS AND PRINT RESULTS
1001 PRINTER IS 701
       S7=0
1010
1020
       S8=0
1030
       T6=0
1040
      FOR I=1 TO N1
1050
      Y3=0
       FOR J=1 TO N2
1060
1070
      Y3=Y3+C1(J)*U(I,J)
1080
      NEXT J
1090
      R3(I)=Y3-Y(I)
                                                 ORIGINAL PAGE IS
1100
      Y2(I)=Y3
                                                 OF POOR QUALITY
1110
      T6=T6+R3(I)^2
1120
       S7=S7+Y(I)
1130
       58=58+Y(I)^2
1140
       NEXT I
1150
      C3=SQR(1-T6/(S8-S7^2/N1))
1160
      IF N1=Ns THEN E5=SQR(T6)
1170
      IF N1<>N2 THEN E5=SQR(T6/(N1-N2))
      FOR J=1 TO N2
1180
1190
      E2(J)=E5*SQR(ABS(B(J,J)))
      NEXT J
1200
      PRINT "
1210
                                              YCAL
                                                            RESID"
1220 FOR I=1 TO N1
1230
      Y, (1), Y, (1), I; "DD. DDD, XA, DD. DDD, XA, DD. DDD, XA, DD. DD, XA, DD, XA, DD, XA, DD, XA, DD, XA, DD, XA,
2(I),R3(I)
1240 NEXT I
1250
      PRINT
      PRINT "COEFFICIENT
1260
                                ERRORS"
      PRINT USING "5X,DDD.DD.3X,DDD.DD";C1(1),E2(1)
1270
1290
      FOR I=2 TO N2
      PRINT USING "5X,DDD.DD.3X,DDD.DD";C1(I),E2(I)
1300
1310
      NEXT I
1320
       PRINT
      PRINT USING "10X,27A.1X,DDD.DD"; "CORRELATION COEFFICIENT IS",C3
1330
1331
       PRINT
1332
      PRINT
1333
       PRINT "EQUATION OF CURVE"
      DO.QDQ.A1, X1, A5, DO.DDQ, X1, A1, X1, A1, DO.DDQ, X1, A1, X1, QQ.DDQ, X0, A1, X1, A2, DDQ.DD
 ,5A";C1(1),"+",C1(2),"X","+糠,C1(3),"X*X","+",C1(4),"X*X*X"
1336
      WAIT 10
1337
       PRINTER IS 1
1340
       RETURN ! FROM PRINTOUT
4000
       ! U AND Y CONVERTED TO A AND Z
4011
       ! IDENTIFIERS
4013
                    NROW
                               NUMBER OF ROWS
            NI
4014
            N2
                    NCOL
                              NUMBER OF COLUMNS
4015
            END OF IDENTIFIERS
4020
            FOR K=1 TO N2
4030
            FOR L=1 TO K
4040
            A(K,L)=0
4050
            FOR I=1 TO N1
4060
            A(K,L)=A(K,L)+U(I,L)+U(I,K)
 4070
            IF K<>L THEN A(L,K)=A(K,L)
 4080
            NEXT I
 4090
            NEXT L
 4100
            Z(K)=0
 4110
            FOR I=1 TO NI
 4120
            Z(K)=Z(K)+Y(I)+U(I,K)
 4130
            NEXT I
 4140
            NEXT K
                JORDAN MATRIX INVERSION AND SOLUTION
5000
 5010
                FEB 7, 1986
 5011
                  IDENTIFIERS
                                  COEFFICIENT MATRIX
 5012
```

```
BIGGEST VALUE
                        BI6
5014
                 B1
5015
                 C1
                        COEF
                                 SOLUTION VECTOR
                                DETERMINANT
                D3
                        DETERM
5016
                                ERROR FLAG
5017
                EI
                        ERMES
                                WORK VARIABLE
                H1
                        HOLD
5018
                                WORK MATRIX
5019
                12
                        INDEX
5020
                13
                        IROW
                                ROW INDEX
                I4
                        ICOL
                                COLUMN INDEX
5021
                15
                                PRINT- INVERSE FLAG
                        INVRS
5022
                N2
                        NCOL
                                NUMBER OF COLUMNS
5023
                N3
                        NVEC
                                NUMBER OF CONSTANT VECTORS
5024
5025
                PI
                        PIVOT
                                PIVOT INDEX
                        W
                                SOLUTION MATRIX
5026
                        7
                                CONSTANT VECTOR
5027
                 7
                 END OF IDENTIFIERS
5029
5080
5090
           E1=0 ! BECOMES ! FOR SINGULAR MATRIX
           15=1 ! PRINT INVERSE MATRIX IF ZERO
5100
5110
           N3=1 ! NUJMBER OF CONSTANT VECTORS
5120
           FOR I=1 TO N2
           FOR J=1 TO N2
5130
           B(I,J)=A(I,J)
5140
5150
           NEXT J
5160
           W(I,1)=Z(I)
           12(1.3)=0
5170
5180
           NEXT I
5190
           D3 = 1
5200
           FOR I=1 TO NZ
5210
              SEARCH FOR LARGEST (PIVOT) ELEMENT
5220
5230
5240
           B1=0
5250
           FOR J=1 TO N2
           IF I2(J.3)=1 THEN 5350
5260
5270
           FOR K=1 TO NZ
                                                        ORIGINAL PAGE IS
5280
           IF I2(K,3)>1 THEN 6120
5290
           IF I2(K.3)=1 THEN 5340
                                                        OF POOR QUALITY
5300
           IF B1>=ABS(B(J,K)) THEN 5340
5310
           I3=J
5320
           I4=K
5330
           B1 = ABS(B(J,K))
5340
           NEXT K
5350
           NEXT J
5360
           12(14,3)=12(14,3)+1
5370
           12(1.1)=13
5380
           12(1,2)=14
5390
           ! INTERCHANGE ROWS TO PUT PIVOT ON DIAGONAL
5400
           IF 13=14 THEN 5540
5410
           03=-03
5420
           FOR L=1 TO N2
5430
           H1=B(13,L)
5440
           B(I3,L)=B(I4,L)
5450
           B(I4,L)=H1
5460
           NEXT L
5470
           IF N3<1 THEN 5540
5480
           FOR L=1 TO N3
5490
           HI=W(I3,L)
5500
           W(I3,L)=W(I4,L)
5510
           W(I4.L)=H1
5520
           NEXT L
5530
            ! DIVIDE PIVOT ROW BY ELEMENT
5540
           P1=B(I4.I4)
5550
           D3=D3*P1
5560
           B(14,14)=1
5570
           FOR L=1 TO N2
```

WHIW

```
mar s mar a grand of
           NEXT L
5590
           IF'N3<1 THEN 5660
5600
           FOR L=1 TO N3
5610
5620
           W(I4,L)=W(I4,L)/P1
           NEXT L
5630
5640
5650
           I REDUCE NONPIVOT ROWS
           FOR LI=1 TO N2
5660
5670
           IF L1=14 THEN 5770
           T=B(L1.14)
5680
5690
           B(L1,I4)=0
           FOR L=1 TO NZ
5700
5710
           B(L1,L)=B(L1,L)-B(I4,L)*T
5720
           NEXT L
           IF N3<1 THEN 5770
5730
5740
           FOR L=1 TO N3
5750
           W(L1,L)=W(L1,L)-W(I4,L)*T
5760
           NEXT L
5770
           NEXT L1
5780
           NEXT I
5790
                                                   ORIGINAL PAGE IS
5800
               INTERCHANGE COLUMNS
5810
                                                  OF POOR QUALITY
5820
           FOR I=1 TO N2
5830
           L=N2-I+1
5840
           IF I2(L,1)=I2(L,2) THEN 5920
5850
            I3=I2(L.1)
5860
           I4=I2(L,2)
           FOR K=1 TO N2
5870
5880
           H1=B(K.I3)
5890
           B(K,I3)=B(K,I4)
5900
           B(K,I4)=H1
5910
           NEXT K
5920
           NEXT I
5930
           FOR K=1 TO N2
5940
            IF 12(K,3)<>1 THEN 6120
5950
           NEXT K
5960
           E1=0
5970
           FOR I=1 TO N2
5980
           C1(I)=W(I,1) - #
5990
           NEXT I
6000
           IF I5=1 THEN 6140
6010
           PRINT
6020
           PRINT " MATRIX INVERSE"
           FOR I=1 TO N2
6030
           FOR J=1 TO N2
6040
6050
           PRINT USING "10X,DDD.D";B(I,J)
6060
           NEXT J
6070
           PRINT
6080
           NEXT I
6090
            PRINT
            PRINT "DETERMINANT =" ,03
6100
           RETURN ! IF INVERSE IS PRINTED
6110
6120
6130
            PRINT "ERROR-MATRIX SINGULAR"
6140
            RETURN ! FROM GAUSS-JORDAN SUBROUTINE
7000 PRINT "DO YOU WANT A GRAPH OF THE FUNCTION (Y/N)"
7001
      INPUT K#
7002
      IF K#="Y" THEN 7009
7003
      IF K#="N" THEN 9999
7009
      I PLOT OF Y AND Y2 AS A FUNCTION OF X, FEB. 5,1985
7010
      C$=CHR$(255)&"K"
7020
      DUMP DEVICE IS 701, EXPANDED
7030
      OUTPUT 2 USING "#,K";C$
                                      ! Clear leftover display
7040 PRINT
```

```
THUR LITTIE
.7060
      OUTPUT 2 USING "#,K";C$ ! Clear screen for graph
7070 PRINT "WHAT X AND Y LABELS DO YOU WANT ON GRAPH"
7080 INPUT T1$,T$
7081 INPUT "MAXIMUM X,Y",N4,N5
                                    ! Initialize various graphics parametersGRAP
7090 GINIT
7100 PLOTTER IS CRT. "INTERNAL"
                                   ! Use the internal screenGRAPHICS OFF
                                   ! Turn on the graphics screenGRAPHICS OFF
7110 GRAPHICS ON
7120 X_gdu_max=100*MAX(1.RATIO) ! Determine how many 6DUs wide the screen is
7130 Y_gdu_max=100*MAX(1,1/RATIO) ! Determine how many 6DUs high the screen is
7140 LORG 6
                                   ! Reference point: center of top of label
7150 DEG
                                    ! Angular mode is degrees (used in LDIR)
7160 LDIR 90
                                    ! Specify vertical labels
7170 CSIZE 4.5
                                    ! Specify smaller characters
7180 MOVE 0,Y_gdu_max/2
                                   ! Move to center of left edge of screen
7190 LABEL T$! Write Y-axis label
7200 LORG 4
                                    ! Reference point: center of bottom of label
7210 LDIR 0
                                    ! Horizontal labels again
7220 MOVE X_gdu_max/2,.07*Y_gdu_max! X: center of screen; Y: above key labels
7230 LABEL TI® | Write X-axis labelGRAPHICS OFF
7240 VIEWPORT .1*X_gdu_max,.98*X_gdu_max,.15*Y_gdu_max,.9*Y_gdu_max
! Define subset of screen area
7250 FRAME
                                   ! Draw a box around defined subset
7260 WINDOW 0,N4,0,N5
7270 AXES 1,1.0,0,10,10,5 | Draw axes with appropriate ticks
7280 CLIP OFF
                                   ! So labels can be outside VIEWPORT limits'
7290 CSIZE 1.6,1.6
                                   ! Smaller chars for axis labelling
                                   ! Ref. pt: Top center !\
7300 LORG 5
7310 FOR I=0 TO N4 STEP N4/10
                                   ! Every 10 units
                                   | A smidgeon below X-axis | > Label X-axis
7320 MOVE I,-.1
                                ! Compact; no CR/LF | /
        LABEL USING "#.DD.D"; I
7330
                                   l et sequens
7340 NEXT I
                                                            17
                                 ! Ref. pt: Right center !\
! Every quarter !!
 7350 LORG 8
7360 FOR I=0 TO NS STEP N5/10
                                                             1 \
                                   | ! Smidgeon left of Y-axis | > Label Y-axi
 7370 MOVE -.05,I
 7380
       LABEL USING "#,DD.D";I ! DD.D; no CR/LF
 7390 NEXT I
                                                             17
                                 ! et sequens
 7400 PENUP
 7410 I=0
 7420 FOR I=1 TO NI
         PLOT X(I),Y(I)
 7430
 7440 NEXT I
 7450 MOVE 0.0
7460 FOR K=1 TO N1
7470 PLOT X(K), Y2(K)
 7480
           NEXT K
 7490 PRINT "IF YOU WANT A HARD COPY OF GRAPH PRESS DUMP GRAPHICS"
 7491
      PRINT "IF NOT PRESS CONTINUE"
 7492 PAUSE
 7493 GRAPHICS OFF
 7500 PRINT "DO YOU WANT TO PLOT ANOTHER SET OF DATA Y/N"
 7510 INPUT Z$
 7520 LABEL TIME$(TIMEDATE), DATE$(TIMEDATE)
 7530 IF Z$="Y" THEN 100
 7540 IF Z$="N" THEN 9999
 7550 RETURN
 7560 GRAPHICS OFF
 7570
      OUTPUT 2 USING "#.K";C$
 9999 END
```

ORIGINAL PAGE IS
OF POOR QUALITY

B. V. Shemaev

Changes in the Electrophysical characteristics of n-type Silicon as a Result of Irradiation with 6.3 Mev Protons Sov. Phys. Semicond. 18(2) February 1984

B. V. Shemaev

Positions of Acceptor levels of Divacancy in the band gap of n-type Silicon irradiated with 6.3 Mev Protons Soviet Phy. Semicond. 18(2) February 1984

J. Lindhard, M. Scharf and H. E. Schiott Range Concepts and Heavy Ions Mat. Fys. Medd. Dan. Vid. Selsk. 33 no. 14 (1963)

> ORIGINAL PAGE IS OF POOR QUALITY

Student Participation

During the Spring 1985 semester six graduate students were participating in the program, Lucian R. Goode, Jr., Akpan E. Akpan, Nana Adu, William Bolden, Larry Brown and Karamali Shojaei. Goode, Adu and Shojaei are working on MuSR projects; Akpan, Bolden and Brown are working on computer modeling of radiation damage in solids. In September 1985 another graduate student, Li-Tai Song, joined the institute and is working on Hall effect studies.

During the Spring 1985 semester four undergraduate students participated,
Michael Davis, Roscoe Ledbetter, Cornelia Belsches and Raymond Noel. Fall 1985
undergraduates were Davis, Ledbetter, Belsches and Tony Barnes.

Other Activities

The director of the institute participated in an experiment on inelastic scattering of polarized protons from ¹²C at the Los Alamos Meson Physics Facility in New Mexico during July/August and November/December 1985. Karamali Shojaei, a VSU graduate student, participated in the July/August run. Other collaborators included Bernard J. Lieb of George Mason University, Herbert O. Funsten, Charles F. Perdrisat and J. Michael Finn of the College of William and Mary, Hans S. Plendl of Florida State University, Joseph Comfort of Arizona State University, and one graduate student each from William and Mary, Florida State and Arizona State.

An abstract of a paper to be presented at the April 1986 APS meeting is included as Appendix 6. We are seeking other sources of funding for our participation in these experiments and hope for success in the near future.

Two papers based on work done at the Tri-University Meson Facility (Vancouver, BC) in 1979-80 and supported in part by NASA grant NSG 1646 were completed in

1985 with extremely minor support from NAG-1-416. Both were accepted for publication by Physical Review C. "Energy dependence of the $^7\text{Li}(p,d)^6\text{Li}$ reaction" appeared in the September 1985 issue and a reprint is included here as Appendix 7. " $^4\text{He}(\dot{p},d)^3\text{He}$ reaction at 200 and 400 MeV" is scheduled to appear in the February 1986 issue and a preprint is included here as Appendix 8.

The director participated in the revision of a paper based on pionnucleus reaction experiments conducted at LAMPF in 1980 and supported in
part by NASA grant NSG-1646. This revised version has been submitted to
Physical Review C and a preprint is included here as Appendix 9.

The director of the institute has served as the Virginia State University representative on the board of trustees of the Southeastern Universities Research Association since October 1983. During 1985 he served on the SURA industrial affiliates committee and in early January 1986 was appointed to the science and technology committee of SURA. This committee will provide SURA oversight for the Continuous Electron Beam Accelerator Facility, which is a 4-GeV continuous wave electron accelerator to be constructed in Newport News, Virginia.

In May 1985 the director completed a one-year term as chairman of the astronomy, mathematics and physics section of the Virginia Academy of Science. He was also appointed to the local organizing committee for the International Symposium on the Physics and Chemistry of Small Clusters, which will take place in October 1986 in Richmond, Virginia.

James C. Davemport served as director of the summer student program at Fermilab (Batavia, Illinois) during the summer of 1985. He also served on the Committee on Minorities in Physics of the American Physical Society this past year.

George W. Henderson, John J. Stith and Larry D. Brown (graduate student) received course credit in the summer of 1985 for an IEEE-NSRE tutorial short course on radiation effects through the New Jersey Institute of Technology.

Equipment and Supplies

The following items were purchased during the reporting period:

- l Janis supertran helium transfer tube
- 4 EMI 9907B photomultiplier tubes
- 3 Ortec 265 tube bases
- 3 Ortec 218 phototube shields
- 1 EG&G/Ortec 567 Time-to-amplitude converter
- 1 PDF 11/73 computer (1-megabyte memory, 31-megabyte hard disk drive, dual floppy disk drives, terminal and printer
- 1 Interface Standards IS-11/CC CAMAC crate controller
- 2 Keithley 175 multimeters
- 1 Keithley 197 multimeter
- 3 Hewlett-Packard HP-15C calculators
- 100 reprints of our paper on MuSR in strained single crystals of iron
 - 1 1-megabyte memory board for HP 9816S computer
 - 1 Hewlett-Packard terminal emulator
 - 1 Hewlett-Packard 9816S computer with accessories
 - 1 Hewlett-Packard HP 3497A data acquisition control unit
 - 1 MICRO/RSX operating system for PDP-11/73 computer
 - 3 PVC inserts and magnetic shields for phototubes

In addition, the internal account at Brookhaven National Laboratory was continued in force. This enables the institute to purchase equipment, supplies and materials from BNL directly while experiments are in progress.

Three peripherals for the PDP 11/73 computer were ordered (plotter, modem, line filter) and received in early 1986. Several others (TEEE bus, QNIVERIER, and Advanced Programmers Kit) are still on order. A quadruple constant fraction discriminator and a scientific word processing program are also on order.

Summary

The second year of support from NASA for the Solid State Physics Research Institute was a year of growth and consolidation. The MuSR program saw a major publication, substantial progress on several other projects and near completion of the new data acquisition and analysis system (which should be complete in time for experiments in the spring of 1986. The radiation damage studies have gone into production mode, and the Hall effect apparatus is essentially complete. The number of student participants increased substantially over the 1984 level.

The higher level of student interest has enabled the principal investigators to set higher standards for student eligibility for research stipends, and the quality of student involvement showed marked improvement as we began the spring 1986 semester.

We look forward to another active and successful year in 1986, and we appreciate the support from NASA which makes these activities possible.

Respectfully submitted,

. Strouach

Carey E. Stronach

Director

February 14, 1986